skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jha, Shantenu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geological records of past environmental change provide crucial insights into long-term climate variability, trends, non-stationarity, and nonlinear feedback mechanisms. However, reconstructing spatiotemporal fields from these records is statistically challenging due to their sparse, indirect, and noisy nature. Here, we present PaleoSTeHM, a scalable and modern framework for spatiotemporal hierarchical modeling of paleo-environmental data. This framework enables the implementation of flexible statistical models that rigorously quantify spatial and temporal variability from geological data while clearly distinguishing measurement and inferential uncertainty from process variability. We illustrate its application by reconstructing temporal and spatiotemporal paleo-sea-level changes across multiple locations. Using various modeling and analysis choices, PaleoSTeHM demonstrates the impact of different methods on inference results and computational efficiency. Our results highlight the critical role of model selection in addressing specific paleo-environmental questions, showcasing the PaleoSTeHM framework's potential to enhance the robustness and transparency of paleo-environmental reconstructions. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026
  2. Free, publicly-accessible full text available April 25, 2026
  3. Free, publicly-accessible full text available April 25, 2026
  4. Significant obstacles exist in scientific domains including genetics, climate modeling, and astronomy due to the management, preprocess, and training on complicated data for deep learning. Even while several large-scale solutions offer distributed execution environments, open-source alternatives that integrate scalable runtime tools, deep learning and data frameworks on high-performance computing platforms remain crucial for accessibility and flexibility. In this paper, we introduce Deep Radical-Cylon(RC), a heterogeneous runtime system that combines data engineering, deep learning frameworks, and workflow engines across several HPC environments, including cloud and supercomputing infrastructures. Deep RC supports heterogeneous systems with accelerators, allows the usage of communication libraries like MPI, GLOO and NCCL across multi-node setups, and facilitates parallel and distributed deep learning pipelines by utilizing Radical Pilot as a task execution framework. By attaining an end-to-end pipeline including preprocessing, model training, and postprocessing with 11 neural forecasting models (PyTorch) and hydrology models (TensorFlow) under identical resource conditions, the system reduces 3.28 and 75.9 seconds, respectively. The design of Deep RC guarantees the smooth integration of scalable data frameworks, such as Cylon, with deep learning processes, exhibiting strong performance on cloud platforms and scientific HPC systems. By offering a flexible, high-performance solution for resource-intensive applications, this method closes the gap between data preprocessing, model training, and postprocessing. 
    more » « less
    Free, publicly-accessible full text available June 7, 2026
  5. Free, publicly-accessible full text available December 21, 2025
  6. Free, publicly-accessible full text available June 3, 2026
  7. Abstract The formation of biomolecular materials via dynamical interfacial processes, such as self-assembly and fusion, for diverse compositions and external conditions can be efficiently probed using ensemble Molecular Dynamics (MD). However, this approach requires many simulations when investigating a large composition phase space. In addition, there is difficulty in predicting whether each simulation will yield biomolecular materials with the desired properties or outcomes and how long each simulation will run. These difficulties can be overcome by rules-based management systems, including intermittent inspection, variable sampling, and premature termination or extension of the individual MD simulations. Automating such a management system can significantly improve runtime efficiency and reduce the burden of organizing large ensembles of MD simulations. To this end, a computational framework, the Pipelines for Automating Compliance-based Elimination and Extension (PACE2), is proposed for high-throughput ensemble biomolecular materials simulations. The PACE2framework encompasses Candidate pipelines, where each pipeline includes temporally separated simulation and analysis tasks. When a MD simulation is completed, an analysis task is triggered, which evaluates the MD trajectory for compliance. Compliant simulations are extended to the next MD phase with a suitable sample rate to allow additional, detailed analysis. Non-compliant simulations are eliminated, and their computational resources are reallocated or released. The framework is designed to run on local desktop computers and high-performance computing resources. Preliminary scientific results enabled by the use of PACE2framework are presented, which demonstrate its potential and validates its function. In the future, the framework will be extended to address generalized workflows and investigate composition-structure-property relations for other classes of materials. 
    more » « less